Skip to content

quantpylib.hft.features

flow_pnl(trades)

Calculates the pnl of the a set of trades.

Parameters:

Name Type Description Default
trades ndarray

2d-array of trades as [[timestamp, price, size, direction], ...].

required

Returns:

Type Description

np.ndarray: The timestamps, running PnLs and cumulative volumes.

rolling_vol(mids, n, exp=False)

Calculate rolling volatility of the mid prices.

Parameters:

Name Type Description Default
mids ndarray

Array of mid prices.

required
n int

The size of the rolling window.

required
exp bool

Whether to use exponential weighting. Defaults to False.

False

Returns:

Type Description

np.ndarray: An array of rolling volatilities.

trade_imbalance(trades, decay_function=lambda sample: exponential_weights(arr=sample, unique_values=True, normalize=True))

Calculate the trade imbalance for a given set of trades w.r.t. some decay function.

Parameters:

Name Type Description Default
trades ndarray

2d-array of trades as [[timestamp, price, size, direction], ...].

required
decay_function function

The decay function. Defaults to exponential_weights.

lambda sample: exponential_weights(arr=sample, unique_values=True, normalize=True)

vol(sample, exp=False)

Calculate the sample volatility.

Parameters:

Name Type Description Default
sample ndarray

The input sample.

required
exp bool

Whether to use exponential weighting. Defaults to False.

False

Returns:

Name Type Description
float

The calculated sample volatility.